Quiz 12

Name
(8 points) Let $F(x, y)=\frac{-y \mathbf{i}+x \mathbf{j}}{x^{2}+y^{2}}$,
(a) Show that $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$
(b) Show that $\int_{C} \mathbf{F} \cdot \boldsymbol{d} \boldsymbol{r}$ is NOT independent of path. Does this contradict Theorem 6? [Hint: Compute $\int_{C_{1}} \mathbf{F} \cdot \boldsymbol{d r}$ and $\int_{C_{2}} \mathbf{F} \cdot \boldsymbol{d} \boldsymbol{r}$, where C_{1} and C_{2} are the upper and lower halves of the circle $x^{2}+y^{2}=1$ from $(1,0)$ to $\left.(-1,0)\right]$.
Theorem 6: Let $F=P \mathbf{i}+Q \mathbf{j}$ be a vector field on an open simply-connected region D. Suppose P and Q have continuous first-order derivatives and $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ throughout D , then F is conservative.

Solution: (a) $P=-\frac{y}{x^{2}+y^{2}}, \frac{\partial P}{\partial y}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}$, and $Q=\frac{x}{x^{2}+y^{2}}, \frac{\partial Q}{\partial x}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}$. Thus, $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$.
(b) $C_{1}: x=\cos t, y=\sin t, 0 \leq t \leq \pi ; C_{2}: x=\cos t, y=\sin t, t=2 \pi$ to $t=\pi$. Then

$$
\int_{C_{1}} \mathbf{F} \cdot d \boldsymbol{r}=\int_{0}^{\pi} \frac{(-\sin t)(-\sin t)+(\cos t)(\cos t)}{\cos ^{2} t+\sin ^{2} t} d t=\int_{0}^{\pi} d t=\pi,
$$

and

$$
\int_{C_{2}} \mathbf{F} \cdot d r=\int_{2 \pi}^{\pi} d t=-\pi .
$$

Since these aren't equal, the line integral of \mathbf{F} isn't independent of path. This doesn't contradict Theorem 6 , since the domain of \mathbf{F}, which is \mathbb{R}^{2} except the origin, isn't simply-connected.
(7 points) Let D be a region bounded by a simple closed path C in the $x y$-plane. Use Green's Theorem to prove that the coordinates of the centroid (\bar{x}, \bar{y}) of D are

$$
\bar{x}=\frac{1}{2 A} \oint_{C} x^{2} d y, \bar{y}=-\frac{1}{2 A} \oint_{C} y^{2} d x
$$

where A is the area of D.

Solution: By Green's theorem, $\frac{1}{2 A} \oint_{C} x^{2} d y=\frac{1}{2 A} \iint_{D} 2 x d A=\frac{1}{A} \iint_{D} x d A=\bar{x}$, and $-\frac{1}{2 A} \oint_{C} y^{2} d x=-\frac{1}{2 A} \iint_{D}-2 y d A=$ $\frac{1}{A} \iint_{D} y d A=\bar{y}$.

